Information gain filter calling
FSelectorRcpp::relief()
in package FSelectorRcpp.
Note
This filter can handle missing values in the features. However, the resulting filter scores may be misleading or at least difficult to compare if some features have a large proportion of missing values.
If a feature has no non-missing observation, the resulting score will be (close to) 0.
See also
PipeOpFilter for filter-based feature selection.
Other Filter:
Filter
,
mlr_filters
,
mlr_filters_anova
,
mlr_filters_auc
,
mlr_filters_boruta
,
mlr_filters_carscore
,
mlr_filters_carsurvscore
,
mlr_filters_cmim
,
mlr_filters_correlation
,
mlr_filters_disr
,
mlr_filters_find_correlation
,
mlr_filters_importance
,
mlr_filters_information_gain
,
mlr_filters_jmi
,
mlr_filters_jmim
,
mlr_filters_kruskal_test
,
mlr_filters_mim
,
mlr_filters_mrmr
,
mlr_filters_njmim
,
mlr_filters_performance
,
mlr_filters_permutation
,
mlr_filters_selected_features
,
mlr_filters_univariate_cox
,
mlr_filters_variance
Super class
mlr3filters::Filter
-> FilterRelief
Examples
if (requireNamespace("FSelectorRcpp")) {
## Relief (default)
task = mlr3::tsk("iris")
filter = flt("relief")
filter$calculate(task)
head(filter$scores, 3)
as.data.table(filter)
}
#> feature score
#> <char> <num>
#> 1: Petal.Length 0.3220339
#> 2: Petal.Width 0.3187500
#> 3: Sepal.Width 0.1820833
#> 4: Sepal.Length 0.1200000
if (mlr3misc::require_namespaces(c("mlr3pipelines", "FSelectorRcpp", "rpart"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("iris")
# Note: `filter.frac` is selected randomly and should be tuned.
graph = po("filter", filter = flt("relief"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))
graph$train(task)
}
#> $classif.rpart.output
#> NULL
#>