Filter using the Boruta algorithm for feature selection.
If keep = "tentative"
, confirmed and tentative features are returned.
Note that there is no ordering in the selected features.
Selected features get a score of 1, deselected features get a score of 0.
The order of selected features is random.
In combination with mlr3pipelines, only the filter criterion cutoff
makes sense.
Initial parameter values
num.threads
:Actual default:
NULL
, triggering auto-detection of the number of CPUs.Adjusted value: 1.
Reason for change: Conflicting with parallelization via future.
References
Kursa MB, Rudnicki WR (2010). “Feature Selection with the Boruta Package.” Journal of Statistical Software, 36(11), 1-13.
See also
PipeOpFilter for filter-based feature selection.
Other Filter:
Filter
,
mlr_filters
,
mlr_filters_anova
,
mlr_filters_auc
,
mlr_filters_carscore
,
mlr_filters_carsurvscore
,
mlr_filters_cmim
,
mlr_filters_correlation
,
mlr_filters_disr
,
mlr_filters_find_correlation
,
mlr_filters_importance
,
mlr_filters_information_gain
,
mlr_filters_jmi
,
mlr_filters_jmim
,
mlr_filters_kruskal_test
,
mlr_filters_mim
,
mlr_filters_mrmr
,
mlr_filters_njmim
,
mlr_filters_performance
,
mlr_filters_permutation
,
mlr_filters_relief
,
mlr_filters_selected_features
,
mlr_filters_univariate_cox
,
mlr_filters_variance
Super class
mlr3filters::Filter
-> FilterBoruta
Examples
# \donttest{
if (requireNamespace("Boruta")) {
task = mlr3::tsk("sonar")
filter = flt("boruta")
filter$calculate(task)
as.data.table(filter)
}
#> Loading required namespace: Boruta
#> feature score
#> <char> <num>
#> 1: V16 1
#> 2: V15 1
#> 3: V27 1
#> 4: V4 1
#> 5: V44 1
#> 6: V9 1
#> 7: V52 1
#> 8: V17 1
#> 9: V31 1
#> 10: V26 1
#> 11: V13 1
#> 12: V49 1
#> 13: V46 1
#> 14: V19 1
#> 15: V18 1
#> 16: V10 1
#> 17: V23 1
#> 18: V45 1
#> 19: V36 1
#> 20: V1 1
#> 21: V47 1
#> 22: V22 1
#> 23: V5 1
#> 24: V51 1
#> 25: V20 1
#> 26: V37 1
#> 27: V48 1
#> 28: V35 1
#> 29: V21 1
#> 30: V28 1
#> 31: V12 1
#> 32: V11 1
#> 33: V7 0
#> 34: V29 0
#> 35: V55 0
#> 36: V42 0
#> 37: V40 0
#> 38: V34 0
#> 39: V32 0
#> 40: V60 0
#> 41: V25 0
#> 42: V39 0
#> 43: V3 0
#> 44: V56 0
#> 45: V24 0
#> 46: V54 0
#> 47: V14 0
#> 48: V53 0
#> 49: V30 0
#> 50: V2 0
#> 51: V41 0
#> 52: V57 0
#> 53: V6 0
#> 54: V8 0
#> 55: V43 0
#> 56: V33 0
#> 57: V58 0
#> 58: V38 0
#> 59: V50 0
#> 60: V59 0
#> feature score
# }