Information gain filter calling
FSelectorRcpp::information_gain() in package FSelectorRcpp. Set
parameter "type" to "gainratio" to calculate the gain ratio, or set to
"symuncert" to calculate the symmetrical uncertainty (see
FSelectorRcpp::information_gain()). Default is "infogain".
Argument equal defaults to FALSE for classification tasks, and to
TRUE for regression tasks.
See also
PipeOpFilter for filter-based feature selection.
Other Filter:
Filter,
mlr_filters,
mlr_filters_anova,
mlr_filters_auc,
mlr_filters_boruta,
mlr_filters_carscore,
mlr_filters_carsurvscore,
mlr_filters_cmim,
mlr_filters_correlation,
mlr_filters_disr,
mlr_filters_find_correlation,
mlr_filters_importance,
mlr_filters_jmi,
mlr_filters_jmim,
mlr_filters_kruskal_test,
mlr_filters_mim,
mlr_filters_mrmr,
mlr_filters_njmim,
mlr_filters_performance,
mlr_filters_permutation,
mlr_filters_relief,
mlr_filters_selected_features,
mlr_filters_univariate_cox,
mlr_filters_variance
Super class
mlr3filters::Filter -> FilterInformationGain
Examples
if (requireNamespace("FSelectorRcpp")) {
## InfoGain (default)
task = mlr3::tsk("sonar")
filter = flt("information_gain")
filter$calculate(task)
head(filter$scores, 3)
as.data.table(filter)
## GainRatio
filterGR = flt("information_gain")
filterGR$param_set$values = list("type" = "gainratio")
filterGR$calculate(task)
head(as.data.table(filterGR), 3)
}
#> feature score
#> <char> <num>
#> 1: V11 0.2053399
#> 2: V12 0.1802854
#> 3: V9 0.1633805
if (mlr3misc::require_namespaces(c("mlr3pipelines", "FSelectorRcpp", "rpart"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("spam")
# Note: `filter.frac` is selected randomly and should be tuned.
graph = po("filter", filter = flt("information_gain"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))
graph$train(task)
}
#> $classif.rpart.output
#> NULL
#>
