ANOVA F-Test filter calling stats::aov(). Note that this is
equivalent to a \(t\)-test for binary classification.
The filter value is -log10(p) where p is the \(p\)-value. This
transformation is necessary to ensure numerical stability for very small
\(p\)-values.
References
For a benchmark of filter methods:
Bommert A, Sun X, Bischl B, Rahnenführer J, Lang M (2020). “Benchmark for filter methods for feature selection in high-dimensional classification data.” Computational Statistics & Data Analysis, 143, 106839. doi:10.1016/j.csda.2019.106839 .
See also
PipeOpFilter for filter-based feature selection.
Other Filter:
Filter,
mlr_filters,
mlr_filters_auc,
mlr_filters_boruta,
mlr_filters_carscore,
mlr_filters_carsurvscore,
mlr_filters_cmim,
mlr_filters_correlation,
mlr_filters_disr,
mlr_filters_find_correlation,
mlr_filters_importance,
mlr_filters_information_gain,
mlr_filters_jmi,
mlr_filters_jmim,
mlr_filters_kruskal_test,
mlr_filters_mim,
mlr_filters_mrmr,
mlr_filters_njmim,
mlr_filters_performance,
mlr_filters_permutation,
mlr_filters_relief,
mlr_filters_selected_features,
mlr_filters_univariate_cox,
mlr_filters_variance
Super class
mlr3filters::Filter -> FilterAnova
Examples
task = mlr3::tsk("iris")
filter = flt("anova")
filter$calculate(task)
head(as.data.table(filter), 3)
#> feature score
#> <char> <num>
#> 1: Petal.Length 90.54412
#> 2: Petal.Width 84.37992
#> 3: Sepal.Length 30.77737
# transform to p-value
10^(-filter$scores)
#> Petal.Length Petal.Width Sepal.Length Sepal.Width
#> 2.856777e-91 4.169446e-85 1.669669e-31 4.492017e-17
if (mlr3misc::require_namespaces(c("mlr3pipelines", "rpart"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("spam")
# Note: `filter.frac` is selected randomly and should be tuned.
graph = po("filter", filter = flt("anova"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))
graph$train(task)
}
#> $classif.rpart.output
#> NULL
#>
