Correlation-Adjusted Marignal Correlation Score Filter
Source:R/FilterCarScore.R
mlr_filters_carscore.Rd
Calculates the Correlation-Adjusted (marginal) coRrelation scores
(short CAR scores) implemented in care::carscore()
in package
care. The CAR scores for a set of features are defined as the
correlations between the target and the decorrelated features. The filter
returns the absolute value of the calculated scores.
Argument verbose
defaults to FALSE
.
See also
PipeOpFilter for filter-based feature selection.
Other Filter:
Filter
,
mlr_filters
,
mlr_filters_anova
,
mlr_filters_auc
,
mlr_filters_boruta
,
mlr_filters_carsurvscore
,
mlr_filters_cmim
,
mlr_filters_correlation
,
mlr_filters_disr
,
mlr_filters_find_correlation
,
mlr_filters_importance
,
mlr_filters_information_gain
,
mlr_filters_jmi
,
mlr_filters_jmim
,
mlr_filters_kruskal_test
,
mlr_filters_mim
,
mlr_filters_mrmr
,
mlr_filters_njmim
,
mlr_filters_performance
,
mlr_filters_permutation
,
mlr_filters_relief
,
mlr_filters_selected_features
,
mlr_filters_univariate_cox
,
mlr_filters_variance
Super class
mlr3filters::Filter
-> FilterCarScore
Examples
if (requireNamespace("care")) {
task = mlr3::tsk("mtcars")
filter = flt("carscore")
filter$calculate(task)
head(as.data.table(filter), 3)
## changing the filter settings
filter = flt("carscore")
filter$param_set$values = list("diagonal" = TRUE)
filter$calculate(task)
head(as.data.table(filter), 3)
}
#> Estimating optimal shrinkage intensity lambda (correlation matrix): 0.0707
#> feature score
#> <char> <num>
#> 1: wt 0.8062818
#> 2: cyl 0.7918806
#> 3: disp 0.7875962
if (mlr3misc::require_namespaces(c("mlr3pipelines", "care", "rpart"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("mtcars")
# Note: `filter.frac` is selected randomly and should be tuned.
graph = po("filter", filter = flt("carscore"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("regr.rpart"))
graph$train(task)
}
#> $regr.rpart.output
#> NULL
#>