Simple filter emulating caret::findCorrelation(exact = FALSE).
This gives each feature a score between 0 and 1 that is one minus the
cutoff value for which it is excluded when using caret::findCorrelation().
The negative is used because caret::findCorrelation() excludes everything
above a cutoff, while filters exclude everything below a cutoff.
Here the filter scores are shifted by +1 to get positive values for to align
with the way other filters work.
Subsequently caret::findCorrelation(cutoff = 0.9) lists the same features
that are excluded with FilterFindCorrelation at score 0.1 (= 1 - 0.9).
See also
PipeOpFilter for filter-based feature selection.
Other Filter:
Filter,
mlr_filters,
mlr_filters_anova,
mlr_filters_auc,
mlr_filters_boruta,
mlr_filters_carscore,
mlr_filters_carsurvscore,
mlr_filters_cmim,
mlr_filters_correlation,
mlr_filters_disr,
mlr_filters_importance,
mlr_filters_information_gain,
mlr_filters_jmi,
mlr_filters_jmim,
mlr_filters_kruskal_test,
mlr_filters_mim,
mlr_filters_mrmr,
mlr_filters_njmim,
mlr_filters_performance,
mlr_filters_permutation,
mlr_filters_relief,
mlr_filters_selected_features,
mlr_filters_univariate_cox,
mlr_filters_variance
Super class
mlr3filters::Filter -> FilterFindCorrelation
Examples
# Pearson (default)
task = mlr3::tsk("mtcars")
filter = flt("find_correlation")
filter$calculate(task)
as.data.table(filter)
#> feature score
#> <char> <num>
#> 1: carb 1.00000000
#> 2: gear 0.72592716
#> 3: qsec 0.34375077
#> 4: wt 0.28755935
#> 5: drat 0.28728887
#> 6: vs 0.25546456
#> 7: hp 0.25018753
#> 8: am 0.20594124
#> 9: disp 0.11202008
#> 10: cyl 0.09796713
## Spearman
filter = flt("find_correlation", method = "spearman")
filter$calculate(task)
as.data.table(filter)
#> feature score
#> <char> <num>
#> 1: qsec 1.00000000
#> 2: am 0.79666789
#> 3: carb 0.34128186
#> 4: drat 0.25518383
#> 5: hp 0.24840661
#> 6: wt 0.22532327
#> 7: vs 0.20842852
#> 8: gear 0.19231200
#> 9: disp 0.10229356
#> 10: cyl 0.07234842
if (mlr3misc::require_namespaces(c("mlr3pipelines", "rpart"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("spam")
# Note: `filter.frac` is selected randomly and should be tuned.
graph = po("filter", filter = flt("find_correlation"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))
graph$train(task)
}
#> $classif.rpart.output
#> NULL
#>
