Kruskal-Wallis rank sum test filter calling stats::kruskal.test()
.
The filter value is -log10(p)
where p
is the \(p\)-value. This
transformation is necessary to ensure numerical stability for very small
\(p\)-values.
Note
This filter, in its default settings, can handle missing values in the features. However, the resulting filter scores may be misleading or at least difficult to compare if some features have a large proportion of missing values.
If a feature has not at least one non-missing observation per label, the resulting score will be NA. Missing scores appear in a random, non-deterministic order at the end of the vector of scores.
References
For a benchmark of filter methods:
Bommert A, Sun X, Bischl B, Rahnenführer J, Lang M (2020). “Benchmark for filter methods for feature selection in high-dimensional classification data.” Computational Statistics & Data Analysis, 143, 106839. doi:10.1016/j.csda.2019.106839 .
See also
PipeOpFilter for filter-based feature selection.
Other Filter:
Filter
,
mlr_filters
,
mlr_filters_anova
,
mlr_filters_auc
,
mlr_filters_boruta
,
mlr_filters_carscore
,
mlr_filters_carsurvscore
,
mlr_filters_cmim
,
mlr_filters_correlation
,
mlr_filters_disr
,
mlr_filters_find_correlation
,
mlr_filters_importance
,
mlr_filters_information_gain
,
mlr_filters_jmi
,
mlr_filters_jmim
,
mlr_filters_mim
,
mlr_filters_mrmr
,
mlr_filters_njmim
,
mlr_filters_performance
,
mlr_filters_permutation
,
mlr_filters_relief
,
mlr_filters_selected_features
,
mlr_filters_univariate_cox
,
mlr_filters_variance
Super class
mlr3filters::Filter
-> FilterKruskalTest
Examples
task = mlr3::tsk("iris")
filter = flt("kruskal_test")
filter$calculate(task)
as.data.table(filter)
#> feature score
#> <char> <num>
#> 1: Petal.Width 28.48654
#> 2: Petal.Length 28.31840
#> 3: Sepal.Length 21.04970
#> 4: Sepal.Width 13.80430
# transform to p-value
10^(-filter$scores)
#> Petal.Width Petal.Length Sepal.Length Sepal.Width
#> 3.261796e-29 4.803974e-29 8.918734e-22 1.569282e-14
if (mlr3misc::require_namespaces(c("mlr3pipelines", "rpart"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("spam")
# Note: `filter.frac` is selected randomly and should be tuned.
graph = po("filter", filter = flt("kruskal_test"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))
graph$train(task)
}
#> $classif.rpart.output
#> NULL
#>